No Access Submitted: 30 October 2014 Accepted: 04 June 2015 Published Online: 19 June 2015
Journal of Rheology 59, 1065 (2015);
more...View Affiliations
View Contributors
  • A. Fall
  • G. Ovarlez
  • D. Hautemayou
  • C. Mézière
  • J.-N. Roux
  • F. Chevoir
Granular materials do not always flow homogeneously like fluids when submitted to external stress, but often form rigid regions that are separated by narrow shear bands where the material yields and flows. This shear localization impacts their apparent rheology, which makes it difficult to infer a constitutive behavior from conventional rheometric measurements. Moreover, they present a dilatant behavior, which makes their study in classical fixed-volume geometries difficult. These features led numerous groups to perform extensive studies with inclined plane flows, which were of crucial importance for the development and the validation of the μ(I)-rheology. Our aim is to develop a method to characterize granular materials with rheometrical tools. Using rheometry measurements in an annular shear cell, dense granular flows of 0.5 mm spherical and monodisperse beads are studied. A focus is placed on the comparison between the present results and the μ(I)-rheology. From steady state measurements of the torque and the gap under imposed shear rate γ̇ and normal force FN, we define an inertial number I. We show that, at low I (small γ̇ and/or large FN), the flow goes to a quasistatic limit, and the response in terms of dimensionless stress or internal friction coefficient—μ—and solid concentration—ϕ—profiles is independent of the inertial number. Upon increasing I (large γ̇ and/or small FN), dilation occurs and ϕ decreases while μ increases. The observed variations are in good agreement with previous observations of the literature [Jop et al., Nature 441, 727–730 (2006) and Hatano, Phys. Rev. E 75, 060301 (R) (2007)]. These results show that the constitutive equations μ(I) and ϕ(I) of granular materials can be measured with a rheometer.
The authors thank P. Mills for useful discussions, a critical reading of the manuscript, and many useful remarks.
  1. 1. Aharonov, E., and D. Sparks, “ Shear profiles and localization in simulations of granular materials,” Phys. Rev. E 65, 051302 (2002)., Google ScholarCrossref, ISI
  2. 2. Ancey, C., P. Coussot, and P. Evesque, “ A theoretical framework for granular suspensions in a steady simple shear flow,” J. Rheol. 43(6), 1673–1699 (1999)., Google ScholarScitation, ISI
  3. 3. Andreotti, B., Y. Forterre, and O. Pouliquen, Granular Media: Between Fluid and Solid ( Cambridge University, Cambridge University, 2013). Google ScholarCrossref
  4. 4. Aranson, I. S., L. S. Tsimring, F. Malloggi, and E. Clement, “ Nonlocal rheological properties of granular flows near a jamming limit,” Phys. Rev. E 78, 031303 (2008)., Google ScholarCrossref, ISI
  5. 5. Azéma, E., and F. Radjai, “ Internal structure of inertial granular flows,” Phys. Rev. Lett. 112, 078001 (2014)., Google ScholarCrossref, ISI
  6. 6. Bagnold, R. A., “ Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R. Soc. London Ser. A 225, 49–63 (1954)., Google ScholarCrossref
  7. 7. Baran, O., and L. Kondic, “ On velocity profiles and stresses in sheared and vibrated granular systems under variable gravity,” Phys. Fluids 18, 121509 (2006)., Google ScholarCrossref
  8. 8. Becker, M., and H. Lippmann, “ Plane plastic flow of granular model material. Experimental setup and results,” Arch. Mech. 29(6), 829–846 (1977). Google Scholar
  9. 9. Boyer, F., E. Guazzelli, and O. Pouliquen, “ Unifying suspension and granular rheology,” Phys. Rev. Lett. 107, 188301 (2011)., Google ScholarCrossref, ISI
  10. 10. Camenen, J.-F., Y. Descantes, and P. Richard, “ Effect of confinement on dense packings of rigid frictionless spheres and polyhedral,” Phys. Rev. E 86, 061317 (2012)., Google ScholarCrossref
  11. 11. Carr, J. F., and D. M. Walker, “ An annular shear cell for granular materials,” Powder Technol. 1(6), 369–373 (1968)., Google ScholarCrossref
  12. 12. Chialvo, S., J. Sun, and S. Sundaresan, “ Bridging the rheology of granular flows in three regimes,” Phys. Rev. E 85, 021305 (2012)., Google ScholarCrossref, ISI
  13. 13. Cleaver, J. A. S., R. M. Nedderman, and R. B. Thorpe, “ Accounting for granular material dilation during the operation of an annular shear cell,” Adv. Powder Technol. 11(4), 385–399 (2000)., Google ScholarCrossref
  14. 14. Coste, C., “ Shearing of a confined granular layer: Tangential stress and dilatancy,” Phys. Rev. E 70, 051302 (2004)., Google ScholarCrossref
  15. 15. da Cruz, F., S. Emam, M. Prochnow, J. Roux, and F. Chevoir, “ Rheophysics of dense granular materials: Discrete simulation of plane shear flows,” Phys. Rev. E. 72, 021309 (2005)., Google ScholarCrossref, ISI
  16. 16. de Ryck, A., R. Ansart, and J. A. Dodds, “ Granular flows down inclined channels with a strainrate dependent friction coefficient, Part I: Non-cohesive materials,” Granular Matter 10, 353–360 (2008)., Google ScholarCrossref
  17. 17. Duran, J., Sands, Powders and Grains ( Springer-Verlag, NY, 2000). Google ScholarCrossref
  18. 18. Edwards, A. N., and J. M. N. T. Gray, “ Erosion-deposition waves in shallow granular free-surface flows,” J. Fluid Mech. 762, 35–67 (2015)., Google ScholarCrossref
  19. 19. Fenistein, D., J. W. van de Meent, and M. van Hecke, “ Universal and wide shear zones in granular bulk flow,” Phys. Rev. Lett. 92, 094301 (2004)., Google ScholarCrossref, ISI
  20. 20. Fenistein, D., and M. van Hecke, “ Kinematics: Wide shear zones in granular bulk flow,” Nature 425, 256–256 (2003)., Google ScholarCrossref
  21. 21. Forterre, Y., and O. Pouliquen, “ Flow of dense granular media,” Annu. Rev. Fluid Mech. 40, 1–24 (2008)., Google ScholarCrossref
  22. 22. Gaume, J., G. Chambon, and M. Naaim, “ Quasistatic to inertial transition in granular materials and the role of fluctuations,” Phys. Rev. E 84, 051304 (2011)., Google ScholarCrossref
  23. 23. Goldhirsch, I., “ Rapid granular flows,” Annu. Rev. Fluid Mech. 35, 267–293 (2003)., Google ScholarCrossref, ISI
  24. 24. Gray, J. M. N. T., and A. N. Edwards, “ A depth-averaged μ(I)-rheology for shallow granular free-surface flows,” J. Fluid Mech. 755, 503–534 (2014)., Google ScholarCrossref
  25. 25. Hatano, T., “ Power-law friction in closely packed granular materials,” Phys. Rev. E 75, 060301 (R) (2007)., Google ScholarCrossref
  26. 26. Iordanoff, I., and M. M. Khonsari, “ Granular lubrication: toward an understanding between kinetic and fluid regime,” ASME J. Tribol. 126, 137–145 (2004)., Google ScholarCrossref
  27. 27. Jalali, P., W. Polashenski, Jr., T. Tynjälä, and P. Zamankhan, “ Particle interactions in a dense monosized granular flow,” Physica D 162, 188–207 (2002)., Google ScholarCrossref
  28. 28. Jenike, A. W., “ Storage and flow of solids,” Bulletin No. 123, Utah Engineering Station, Salt Lake City, UT., 1964. Google Scholar
  29. 29. Jenkins, J. T., “ Boundary conditions for rapid granular flows: Flat, frictional walls,” J. Appl. Mech. 59, 120–127 (1992)., Google ScholarCrossref
  30. 30. Jenkins, J. T., and M. W. Richman, “ Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks,” Phys. Fluids 28(12), 3485–3494 (1985)., Google ScholarCrossref
  31. 31. Jenkins, J. T., and S. B. Savage, “ A theory for the rapid flow of identical smooth nearly elastic spherical particles,” J. Fluid Mech. 130, 187–202 (1983)., Google ScholarCrossref
  32. 32. Jop, P., Y. Forterre, and O. Pouliquen, “ Crucial role of sidewalls in granular surface flows: Consequences for the rheology,” J. Fluid Mech. 541, 167–192 (2005)., Google ScholarCrossref, ISI
  33. 33. Jop, P., Y. Forterre, and O. Pouliquen, “ A constitutive law for dense granular flows,” Nature 441, 727–730 (2006)., Google ScholarCrossref, ISI
  34. 34. Kamrin, K., and G. Koval, “ Nonlocal constitutive relation for steady granular flow,” Phys. Rev. Lett. 108, 178301 (2012)., Google ScholarCrossref, ISI
  35. 35. Koval, G., J.-N. Roux, A. Corfdir, and F. Chevoir, “ Annular shear of cohesionless granular materials: From the inertial to quasistatic regime,” Phys. Rev. E 79(2), 021306 (2009)., Google ScholarCrossref
  36. 36. Lois, G., A. Lemaitre, and J. M. Carlson, “ Numerical tests of constitutive laws for dense granular flows,” Phys. Rev. E. 72, 051303 (2005)., Google ScholarCrossref, ISI
  37. 37. Luding, S., “ The effect of friction on wide shear bands,” Part. Sci. Technol. 26, 33–42 (2008)., Google ScholarCrossref
  38. 38. Macosko, C. W., Rheology: Principles, Measurements and Applications ( Wiley VCH, NY, 1994). Google Scholar
  39. 39. Midi, GDR, “ On dense granular flows,” Eur. Phys. J. E 14, 341–365 (2004)., Google ScholarCrossref
  40. 40. Mills, P., P. Rognon, and F. Chevoir, “ Rheology and structure of granular materials near the jamming transition,” Euro. Phys. Lett. 81, 64005 (2008)., Google ScholarCrossref
  41. 41. Moucheront, P., F. Bertrand, G. Koval, L. Tocquer, S. Rodts, J.-N. Roux, A. Corfdir, and F. Chevoir, “ MRI investigation of granular interface rheology using a new cylinder shear apparatus,” Magn. Reson. Imaging 28(6), 910–918 (2010)., Google ScholarCrossref
  42. 42. Nedderman, R. M., Statics and Kinematics of Granular Materials ( Cambridge University, Cambridge, 1992). Google ScholarCrossref
  43. 43. Ovarlez, G., C. Fond, and E. Clément, “ Overshoot effect in the Janssen granular column: a crucial test for granular mechanics,” Phys. Rev. E 67, 060302(R) (2003)., Google ScholarCrossref
  44. 44. Peyneau, P.-E., and J.-N. Roux, “ Frictionless bead packs have macroscopic friction, but no dilatancy,” Phys. Rev. E 78, 011307 (2008)., Google ScholarCrossref, ISI
  45. 45. Pouliquen, O., C. Cassar, P. Jop, Y. Forterre, and M. Nicolas, “ Flow of dense granular material: towards simple constitutive laws,” J. Stat. Mech. 2006, P07020 (2006)., Google ScholarCrossref
  46. 46. Pouliquen, O., and Y. Forterre, “ Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane,” J. Fluid Mech. 453, 133–151 (2002)., Google ScholarCrossref, ISI
  47. 47. Richman, M. W., and C. S. Chou, “ Boundary effects on granular shear flows of smooth disks,” J. Appl. Math. Phys. 39(6), 885–901 (1988)., Google ScholarCrossref
  48. 48. Roux, J.-N., and G. Combe, “ Rhéologie quasi-statique et origines de la déformation,” C.R. Phys. 3, 131–140 (2002)., Google ScholarCrossref
  49. 49. Savage, S. B., and K. Hutter, “ The motion of a finite mass of granular material down a rough incline,” J. Fluid Mech. 199, 177–215 (1989)., Google ScholarCrossref, ISI
  50. 50. Savage, S. B., and M. Sayed, “ Stresses developed by dry cohesionless granular materials sheared in an annular shear cell,” J. Fluid. Mech. 142, 391–430 (1984)., Google ScholarCrossref
  51. 51. Schofield, A., and P. Wroth, Critical State Soil Mechanics ( McGraw-Hill, Cambridge University, 1968). Google Scholar
  52. 52. Schulze, D., “ Flowability and time consolidation measurements using a ring shear tester,” Powder Handl Proc. 8, 221–226 (1996). Google Scholar
  53. 53. Schwedes, J., “ Review on testers for measuring flow properties of bulk solids,” Granular Matter 5, 1–43 (2003)., Google ScholarCrossref
  54. 54. Shojaaee, Z., J.-N. Roux, F. Chevoir, and D. E. Wolf, “ Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region,” Phys. Rev. E 86(1), 011301 (2012)., Google ScholarCrossref
  55. 55. Silbert, L. E., D. Ertas, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimpton, “ Granular flow down an inclined plane: Bagnold scaling and rheology,” Phys. Rev. E 64, 051302 (2001)., Google ScholarCrossref, ISI
  56. 56. Silbert, L. E., J. W. Landry, and G. S. Grest, “ Granular flow down a rough inclined plane: transition between thin and thick piles,” Phys. Fluids 15, 1–10 (2003)., Google ScholarCrossref, ISI
  57. 57. Staron, L., P.-Y. Lagrée, C. Josserand, and D. Lhuillier, “ Flow and jamming of a two-dimensional granular bed: Toward a nonlocal rheology?,” Phys. Fluids 22, 113303 (2010)., Google ScholarCrossref, ISI
  58. 58. Torquato, S., T. M. Truskett, and P. G. Debenedetti, “ Is random close packing of spheres well defined?,” Phys. Rev. Lett. 84, 2064–2067 (2000)., Google ScholarCrossref
  59. 59. Tripathi, A., and D. V. Khakhar, “ Rheology of binary granular mixtures in the dense flow regime,” Phys. Fluids 23, 113302 (2011)., Google ScholarCrossref, ISI
  60. 60. Wang, X., H. P. Zhu, and A. B. Yu, “ Flow properties of particles in a model annular shear cell,” Phys. Fluids 24, 053301 (2012)., Google ScholarCrossref
  61. 61. Wroth, C. P., “ Soil behaviour during shear—Existence of critical void ratios,” Engineering 186, 409–413 (1958). Google Scholar
  1. © 2015 The Society of Rheology.