ABSTRACT
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate. It is also explains the MRI observations: when flow is localized, the nonflowing region plays the role of a “dilatancy reservoir” which allows the material to be sheared without jamming.
- 1. Ackerson, B. J., “Shear induced order and shear processing of model hard sphere suspensions,” J. Rheol. 34, 553–590 (1990). https://doi.org/10.1122/1.550096 , Google ScholarScitation, ISI
- 2. Ball, R. C., and J. R. Melrose, “Lubrication breakdown in hydrodynamic simulations of concentrated colloids,” Adv. Colloid Interface Sci. 59, 19–30 (1995). https://doi.org/10.1016/0001-8686(95)80003-L , Google ScholarCrossref, ISI
- 3. Barnes, H. A., “Shear-thickening (‘dilatancy’) in suspensions of non aggregating solid particles dispersed in Newtonian liquids,” J. Rheol. 33, 329–366 (1989). https://doi.org/10.1122/1.550017 , Google ScholarScitation
- 4. Bender, J. W., and N. J. Wagner, “Reversible shear thickening in monodisperse and bidisperse colloidal dispersion,” J. Rheol. 40, 899–916 (1996). https://doi.org/10.1122/1.550767 , Google ScholarScitation
- 5. Berthier, L., J. L. Barrat, and J. Kurchan, “A two-time-scale, two-temperature scenario for nonlinear rheology,” Phys. Rev. E 61, 5464 (2000). https://doi.org/10.1103/PhysRevE.61.5464 , Google ScholarCrossref
- 6. Bertrand, E., J. Bibette, and V. Schmitt, “From shear thickening to shear-induced jamming,” Phys. Rev. E 66, 060401 (2002). https://doi.org/10.1103/PhysRevE.66.060401 , Google ScholarCrossref, ISI
- 7. Bischoff White, E. E., M. Chellamuthu, and J. P. Rothstein, “Extensional rheology of a shear-thickening cornstarch and water suspension,” Rheol. Acta 49, 119–129 (2010). https://doi.org/10.1007/s00397-009-0415-3 , Google ScholarCrossref
- 9. Boersma, W. H., J. Laven, and H. N. Stein, “Shear thickening (dilatancy) in concentrated dispersions,” AIChE J. 36, 321–332 (1990). https://doi.org/10.1002/aic.690360302 , Google ScholarCrossref, ISI
- 10. Bonn D., S. Rodts, M. Groenink, S. Rafai, N. Shahidzadeh-Bonn, and P. Coussot, “Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids,” Annu. Rev. Fluid Mech. 40, 209 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102211 , Google ScholarCrossref, ISI
- 11. Bonn, D., and M. Denn, “Yield stress fluids slowly yield to analysis,” Science 324, 1401–1402 (2009). https://doi.org/10.1126/science.1174217 , Google ScholarCrossref, ISI
- 13. Brown, E., N. A. Forman, C. S. Orellana, H. Zhang, B. Maynor, D. Betts, J. M. DeSimone, and H. M. Jaeger, “On the generality of shear thickening in suspensions,” Nature Mater. 9, 220–224 (2010). Google ScholarCrossref
- 12. Brown, E., and H. M. Jaeger, “Dynamic jamming point for shear thickening suspensions,” Phys. Rev. Lett. 103, 086001 (2009). https://doi.org/10.1103/PhysRevLett.103.086001 , Google ScholarCrossref, ISI
- 14. Brown, E., and H. M. Jaeger, “The role of dilation and confining stresses in shear thickening of dense suspensions,” http://arxiv.org/abs/1010.4921 (2012). Google Scholar
- 15. Cates, M. E., M. D. Haw, and C. B. Holmes, “Dilatancy, jamming, and the physics of granulation,” J. Phys.: Condens. Matter 17, S2517–S2531 (2005). https://doi.org/10.1088/0953-8984/17/24/010 , Google ScholarCrossref, ISI
- 16. Chen, L. B., B. J. Ackerson, and C. F. Zukoski, “Rheological consequences of microstructural transitions in colloidal crystals,” J. Rheol. 38(1–25), 193–216 (1994). https://doi.org/10.1122/1.550498 , Google ScholarScitation
- 18. Cho, K. S., K. Hyun, K. H. Ahn, and S. J. Lee, “A geometrical interpretation of large amplitude oscillatory shear response,” J. Rheol. 49, 747–758 (2005). https://doi.org/10.1122/1.1895801 , Google ScholarScitation, ISI
- 19. Coussot, P., Q. D. Nguyen, H. T. Huynh, and D. Bonn, “Viscosity bifurcation in thixotropic, yielding fluids,” J. Rheol. 46, 573–589 (2002a). https://doi.org/10.1122/1.1459447 , Google ScholarScitation, ISI
- 20. Coussot, P., Q. D. Nguyen, H. T. Huynh, and D. Bonn, “Avalanche behavior in yield stress Fluids,” Phys. Rev. Lett. 88(17), 175501 (2002b). https://doi.org/10.1103/PhysRevLett.88.175501 , Google ScholarCrossref, ISI
- 21. da Cruz, F., S. Emam, M. Prochnow, J.-N. Roux, and F. Chevoir, “Rheophysics of dense granular flows: Discrete simulation of plane shear flows,” Phys. Rev. E, 72, 021309 (2005). https://doi.org/10.1103/PhysRevE.72.021309 , Google ScholarCrossref
- 22. Ewoldt, R. H., A. E. Hosoi, and G. H. McKinley, “New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear,” J. Rheol. 52, 1427–1458 (2008). https://doi.org/10.1122/1.2970095 , Google ScholarScitation, ISI
- 23. Fall, A., N. Huang, F. Bertrand, G. Ovarlez, and D. Bonn, “Shear thickening in cornstarch suspension is a re-entrant jamming transition,” Phys. Rev. Lett. 100, 018301 (2008). https://doi.org/10.1103/PhysRevLett.100.018301 , Google ScholarCrossref
- 24. Fall, A., F. Bertrand, G. Ovarlez, and D. Bonn, “Yield stress and shear banding in granular materials,” Phys. Rev. Lett. 103, 178301 (2009). https://doi.org/10.1103/PhysRevLett.103.178301 , Google ScholarCrossref
- 25. Fall, A., A. Lemaitre, F. Bertrand, D. Bonn, and G. Ovarlez, “Shear thickening and migration in granular suspension,” Phys. Rev. Lett. 105, 268303 (2010). https://doi.org/10.1103/PhysRevLett.105.268303 , Google ScholarCrossref
- 26. Franks, G. V., Z. Zhou, N. J. Duin, and D. V. Boger, “Effect of interparticle forces on shear thickening of oxide suspensions,” J. Rheol. 36(5), 845–883 (2000). Google Scholar
- 27. Foss, D. R., and J. F. Brady, “Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation,” J. Fluid Mech. 407, 167–200 (2000). https://doi.org/10.1017/S0022112099007557 , Google ScholarCrossref, ISI
- 28. Gopalakrishnan, V., and C. F. Zukoski, “Effect of attractions on shear thickening in dense suspensions,” J. Rheol. 48, 1321–1344 (2004). https://doi.org/10.1122/1.1784785 , Google ScholarScitation
- 29. Haw, M. D., “Jamming, two-fluid behaviour, and ‘self-filtration’ in concentrated particulate suspensions,” Phys. Rev. Lett. 92, 185506 (2004). https://doi.org/10.1103/PhysRevLett.92.185506 , Google ScholarCrossref
- 30. Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability,” J. Rheol. 16, 155–173 (1972). https://doi.org/10.1122/1.549250 , Google ScholarScitation, ISI
- 31. Hoffman, R. L., “Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests,” J. Colloid. Interface Sci. 46, 491–506 (1974). https://doi.org/10.1016/0021-9797(74)90059-9 , Google ScholarCrossref, ISI
- 32. Holmes C. B., M. E. Cates, M. Fuchs, and P. Sollich, “Glass transitions and shear thickening suspension rheology,” J. Rheol. 49, 237 (2005). https://doi.org/10.1122/1.1814114 , Google ScholarScitation, ISI
- 33. Huang, N., and D. Bonn, “Viscosity of a dense suspension in Couette flow,” J. Fluid Mech. 590, 497–507 (2007). https://doi.org/10.1017/S0022112007008026 , Google ScholarCrossref, ISI
- 34. Isa, L., R. Besseling, A. N. Morozov, and W. C. K. Poon, “Velocity oscillations in microfluidic flows of concentrated colloidal suspensions,” Phys. Rev. Lett. 102, 058302 (2009). https://doi.org/10.1103/PhysRevLett.102.058302 , Google ScholarCrossref, ISI
- 35. Klein, C. O., H. W. Spiess, A. Calin, C. Balan, and M. Wilhelm, “Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response,” Macromolecules, 40, 4250–4259 (2007). https://doi.org/10.1021/ma062441u , Google ScholarCrossref, ISI
- 36. Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999). Google Scholar
- 37. Laun, H. M., R. Bung, S. Hess, W. Loose, O. Hesse, K. Hahn, E. Hadicke, R. Hingmann, F. Schmidt, and P. Lindner, “Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow,” J. Rheol. 36, 743 (1992). https://doi.org/10.1122/1.550314 , Google ScholarScitation
- 38. Leighton, D., and A. Acrivos, “Measurement of shear-induced self-diffusion in concentrated suspensions of spheres,” J. Fluid Mech. 177, 109–131 (1987a). https://doi.org/10.1017/S0022112087000880 , Google ScholarCrossref, ISI
- 39. Leighton, D., and A. Acrivos, “The shear-induced migration of particles in concentrated suspensions,” J. Fluid Mech. 181, 415–439 (1987b). https://doi.org/10.1017/S0022112087002155 , Google ScholarCrossref, ISI
- 40. Lemaître A., J.-N. Roux, and F. Chevoir, “What do dry granular flows tell us about dense non-Brownian suspension rheology?,” Rheol. Acta 48, 925 (2009). https://doi.org/10.1007/s00397-009-0379-3 , Google ScholarCrossref
- 41. Lootens D., H. Van Damme, and P. Hebraud, “Giant stress fluctuations at the jamming transition,” Phys. Rev. Lett. 90, 178301 (2003). https://doi.org/10.1103/PhysRevLett.90.178301 , Google ScholarCrossref, ISI
- 42. Lootens D., H. Van damme, Y. Hemar and P. Hebraud, “Dilatant flow of concentrated suspensions of rough particles,” Phys. Rev. Lett. 95, 268302 (2005). https://doi.org/10.1103/PhysRevLett.95.268302 , Google ScholarCrossref, ISI
- 43. Macias, E. R., F. Bautista, J. F. A. Soltero, J. E. Puig, P. Attane, and O. Manero, “On the shear thickening flow of dilute CTAT worm-like micellar solutions,” J. Rheol. 47(3), 643–658 (2003). https://doi.org/10.1122/1.1562479 , Google ScholarScitation
- 44. Maranzano, B. J., and N. J. Wagner, “Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening,” J. Chem. Phys. 117(22), 10291–10302 (2002). https://doi.org/10.1063/1.1519253 , Google ScholarCrossref
- 45. Melrose, J. R., and R. C. Ball, “Contact networks in continuously shear thickening colloids,” J. Rheol. 48, 961–978 (2004a). https://doi.org/10.1122/1.1784784 , Google ScholarScitation, ISI
- 46. Melrose, J. R., and R. C. Ball, “Continuous shear thickening transitions in model concentrated colloids—The role of interparticle forces,” J. Rheol. 48, 937–960 (2004b). https://doi.org/10.1122/1.1784783 , Google ScholarScitation, ISI
- 47. Merkt, F. S., R. D. Deegan, D. I. Goldman, E. C. Rericha, and H. L. Swinney, “Persistent holes in a fluid,” Phys. Rev. Lett. 92, 184501 (2004). https://doi.org/10.1103/PhysRevLett.92.184501 , Google ScholarCrossref, ISI
- 48. Mills, P., and P. Snabre, “Apparent viscosity and particle pressure of a concentrated suspension of a non-Brownian hard spheres near the jamming transition,” Eur. Phys. J. E 30, 309–316 (2009). https://doi.org/10.1140/epje/i2009-10530-7 , Google ScholarCrossref
- 49. Moller, P., J. Mewis, and D. Bonn, “Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice,” Soft Matter 2, 274–283 (2006). https://doi.org/10.1039/b517840a , Google ScholarCrossref, ISI
- 50. Møller, P. C. F., S. Rodts, M. A. J. Michels, and D. Bonn, “Shear banding and yield stress in soft glassy materials,” Phys. Rev. E 77, 041507 (2008). https://doi.org/10.1103/PhysRevE.77.041507 , Google ScholarCrossref, ISI
- 51. Møller, P. C. F., A. Fall, V. Chikkadi, D. Derks, and D. Bonn, “An attempt to categorize yield stress fluid behaviour,” Philos. Trans. R. Soc. London 367, 5139 (2009). https://doi.org/10.1098/rsta.2009.0194 , Google ScholarCrossref
- 52. O’Brien, V. T., and M. E. Mackay, “Stress components and shear thickening of concentrated hard sphere suspensions,” Langmuir 16, 7931–7938 (2000). https://doi.org/10.1021/la000050h , Google ScholarCrossref
- 55. Ovarlez, G., F. Bertrand, and S. Rodts, “Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging,” J. Rheol. 50, 256–292 (2006). https://doi.org/10.1122/1.2188528 , Google ScholarScitation
- 53. Ovarlez, G., K. Krishan, and S. Cohen-Addad, “Investigation of shear banding in three-dimensional foams,” Europhys. Lett. 91, 68005 (2010). https://doi.org/10.1209/0295-5075/91/68005 , Google ScholarCrossref
- 54. Ovarlez, G., S. Rodts, P. Coussot, J. Goyon, and A. Colin, “Wide gap Couette flows of dense emulsions: Local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging,” Phys. Rev. E 78, 036307 (2008). https://doi.org/10.1103/PhysRevE.78.036307 , Google ScholarCrossref
- 56. Phung, T. N., J. F. Brady, and G. Bossis, “Stokesian dynamics simulation of Brownian suspensions,” J. Fluid Mech. 313, 181–207 (1996). https://doi.org/10.1017/S0022112096002170 , Google ScholarCrossref, ISI
- 57. Raynaud, J. S., P. Moucheront, J. C. Baudez, F. Bertrand, J. P. Guilbaud, and P. Coussot, “Direct determination by NMR of the thixotropic and yielding behavior of suspensions,” J. Rheol. 46, 709–732 (2002). https://doi.org/10.1122/1.1463420 , Google ScholarScitation, ISI
- 58. Reynolds, O., “On the dilatancy of media composed of rigid particles in contact, with experimental illustrations,” Philos. Mag. J. Sci. 20(S5), 469–481 (1885). https://doi.org/10.1080/14786448508627791 , Google ScholarCrossref
- 59. Rodts, S., J. C. Baudez, and P. Coussot, “From ‘discrete’ to ‘continuum’ flow in foams,” Europhys. Lett. 69, 636–642 (2005). https://doi.org/10.1209/epl/i2004-10374-3 , Google ScholarCrossref
- 60. Sellitto, M., and J. Kurchan, “Shear-thickening and entropy-driven reentrance,” Phys. Rev. Lett. 95, 236001 (2005). https://doi.org/10.1103/PhysRevLett.95.236001 , Google ScholarCrossref
- 61. Yu, W., P. Wang, and C. Zhou, “General stress decomposition in nonlinear oscillatory shear flow,” J. Rheol., 53, 215–238 (2009). https://doi.org/10.1122/1.3037267 , Google ScholarScitation, ISI
- 62. Wagner, N. J., and J. F. Brady, “Shear thickening in colloidal dispersions,” Phys. Today 62(10), 27–32 (2009). https://doi.org/10.1063/1.3248476 , Google ScholarCrossref, ISI
- 63. van der Werff, J. C., and C. G. De Kruif, “Hard-sphere colloidal dispersion: The scaling of rheological properties with particle size, volume fraction, and shear rate,” J. Rheol. 33, 421–454 (1989). https://doi.org/10.1122/1.550062 , Google ScholarScitation
- 64. Williamson, R. V., and W. W. Heckert, “Some properties of dispersions of quicksand type,” Ind. Eng. Chem. 23, 667–670 (1931). https://doi.org/10.1021/ie50258a015 , Google ScholarCrossref
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.